MIXED SOLVENTS IN GAS-LIQUID CHROMATOGRAPHY

ACTIVITY COEFFICIENTS FOR CHLOROFORM, DICHLOROMETHANE AND ETHYL ACETATE IN SQUALANE-DINONYL PHTHALATE MIXTURES AT $303^{\circ} \mathrm{K}$

ANTHONY J. ASHWORTH* and GARETH J. PRICE

School of Chemistry, University of Bath, Bath, BA2 7AY (U.K.)
(Received January 8th, 1985)

Abstract

SUMMARY

Activity and partition coefficients for the polar solutes chloroform, dichloromethane and ethyl acetate at infinite dilution in squalane-dinonyl phthalate mixtures have been determined at $303^{\circ} \mathrm{K}$ by the extrapolation of measurements made using a vacuum microbalance technique. The results are compared with predictions using the Purnell-Andrade and Tiley-Perry relationships.

The effect of solvent-solid support ratios on the determined activity coefficients and the adsorption phenomena involved have been examined. Whereas 20% by weight of solvent yields true bulk liquid activity coefficients for chloroform and dichloromethane, a 40\% loading is necessary for ethyl acetate.

INTRODUCTION

The infinite dilution activity and partition coefficients for a number of nonpolar solutes ${ }^{1-3}$ and one moderately polar solute ${ }^{4}$ (diethyl ether) in mixtures of squalane and dinonyl phthalate have been reported and used to illustrate the deviation of these systems from the simple relation proposed by Purnell and Vargas de Andrade ${ }^{5}$ to predict the retention behaviour of mixed solvents in gas-liquid chromatography (GLC). It has also been shown that these systems are better represented by conventional solution theory. The study has been extended in the present work by the use of the more polar solutes chloroform, dichloromethane and ethyl acetate. In addition, the effect on the measured activity coefficients of different solvent to solid support ratios has been determined and the resulting adsorption phenomena examined.

EXPERIMENTAL

Absorption isotherms for chloroform and dichloromethane at $302.99 \pm$ $0.01^{\circ} \mathrm{K}$ were determined using a Sartorius Model 4102 electronic vacuum microbal-
ance in conjunction with a Texas Instruments quartz Bourdon pressure gauge. The apparatus and the techniques have been described previously ${ }^{1}$. The isotherms for the absorption of ethyl acetate at the same temperature were determined using a Sartorius Model 4201 magnetic suspension vacuum microbalance with a MKS Instruments Type 270/370 Baratron pressure gauge having a maximum reading of 100 Torr. This allowed the weight changes to be monitored to $\pm 0.1 \mathrm{mg}$ on an absorbent sample of $c a .20 \mathrm{~g}$, and the pressure to be measured to ± 0.01 Torr. The vacuum microbalance and the experimental techniques have again been described previously ${ }^{6}$. Measurements of the absorption of ethyl acetate by the bulk solvents were made by filling a series of trays suspended from the microbalance with solvent to a depth of $c a .1 \mathrm{~mm}$. The magnetic suspension balance was used to determine the ethyl acetate isotherms as this solute was found to interact strongly with the VITON vacuum sealing rings employed in the other balance.

The solvents, squalane ($2,6,10,15,19,23$-hexamethyl tetracosane, Hopkins and Williams) and dinonyl phthalate [di-(3,5,5-trimethylhexyl)-1,2-benzene dicarboxylate, BDH] were used without further purification. The solutes were BDH Aristar grade. The ethyl acetate had a certified purity $>99.5 \%$. The chloromethanes were treated by passage down a column of active basic alumina to remove the ethanol stabilizer, and a minimum purity of 99.9% was determined by GLC. The solvents squalane and dinonyl phthalate (DNP) and their mixtures were coated onto Celite 545 AW of sieve size B.S.S. $100-120$, obtained from Phase Separations, using 40$60^{\circ} \mathrm{C}$ boiling range petroleum ether. The squalane-DNP mixtures were prepared at mole ratios of $c a .3: 1,1: 1$ and 1:3. The actual mole ratios are given in Table I.

RESULTS AND DISCUSSION

Activity coefficients γ_{A} were calculated from the mole fraction of solute absorbed x_{A} at a vapour pressure P_{A} using eqns. 1 and 2 .
$\gamma_{\mathrm{P}, \mathrm{A}}=\boldsymbol{P}_{\mathrm{A}} /\left(P_{\mathrm{A}}^{0} x_{\mathrm{A}}\right)$
$\ln \gamma_{\mathrm{A}}=\ln \gamma_{\mathrm{P}, \mathrm{A}}+\left[\left(V_{\mathrm{A}}^{0}-B_{\mathrm{AA}}\right)\left(P_{\mathrm{A}}^{0}-P_{\mathrm{A}}\right) / R T\right]+\left[\left(B_{\mathrm{AA}} / R T\right)^{2}\left(P_{\mathrm{A}}^{02}-P_{\mathrm{A}}^{2}\right) / 2\right]$
where $\gamma_{\mathrm{P}, \mathrm{A}}$ is the activity coefficient uncorrected for gas phase non-ideality and liquid phase compressibility. Values used for the saturated vapour pressure P_{A}^{0} and the

TABLE I
ACTUAL MOLE RATIOS $n_{B}: n_{C}$ FOR THE SQUALANE (B)-DNP (C) MIXTURES

Solute	$n_{B}: n_{C}$		
	$3: 1$	$1: 1$	$1: 3$
Chloroform	$2.987: 1$	$1: 1.038$	$1: 2.854$
Dichloromethane	$3.029: 1$	$1: 1.081$	$1: 3.144$
Ethyl acetate	$3.165: 1$	$1: 1.010$	$1: 2.999$

TABLE II
SATURATED VAPOUR PRESSURES P_{A}°, SECOND VIRIAL COEFFICIENTS $B_{A A}$ AND MOLAR VOLUMES V_{A}^{0} OF THE SOLUTES AT $303^{\circ} \mathrm{K}$

Solute	$P_{A}^{0}(\text { Torr })^{7}$	$B_{A A}\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)^{8}$	$V_{A}^{0}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)^{9}$
Chloroform	240.80	-1.16	81.18
Dichloromethane	525.88	-0.81	64.98
Ethyl acetate	119.17	-2.04	99.24

molar volume V_{A}^{0} of the pure liquid solutes, and the second virial coefficient B_{AA} of the pure gaseous solutes, are given in Table II.

It is known that adsorption effects can contribute to the retention properties of liquid solvents coated on solid supports ${ }^{10}$. In the absorption of diethyl ether into SQ and DNP4 these effects resulted in a variation of the activity coefficient determined with liquid loadings below 27%. (Throughout this work, the liquid loading is quoted as the percentage by weight of the absorbent sample that is solvent.) Freeguard and Stock ${ }^{11}$ studied the absorption of chloromethanes by squalane and DNP as separate solvents using a McBain-Bakr balance and found no such adsorption effects when liquid loadings of $c a .30 \%$ were employed. To confirm these findings, as this type of apparatus becomes increasingly inaccurate at low solute concentrations ${ }^{12}$, absorption isotherms for chloroform and dichloromethane were measured at liquid loadings of 20% and 30% for each solvent. The results for the absorption into the separate solvents are shown in Figs. 1 and 2 as plots of the logarithm of activity coefficient versus mole fraction of solute. The figures show that for both solvents the results at the two liquid loadings were negligibly different, so confirming the absence of adsorption effects and that true bulk solubility was being measured.

Fig. 1. The natural logarithm of the activity coefficient $\ln \gamma_{\mathrm{A}}$ at $303^{\circ} \mathrm{K}$ for the solutes, chloroform and dichloromethane, in squalane plotted against the solute mole fraction x_{A}. The squalane loadings on Celite are $19.8 \%(\triangle)$ and $31.5 \%(O)$. The full curves show the best fit of eqn. 3 to the results.
TABLE III
ABSORPTION OF SOLUTES (A) IN SQUALANE (B)-DINONYL PHTHALATE (C) MIXTURES AT $303^{\circ} \mathrm{K}$

$n_{B}: n_{C}=1: 0$			$n_{B}: n_{C}=3: 1$			$n_{B}: n_{C}=1: 1$			$n_{B}: n_{C}=1: 3$			$n_{B}: n_{C}=0: 1$		
x_{A}	$\begin{aligned} & P_{\mathbf{A}} \\ & \text { (Torr) } \end{aligned}$	γ_{1}	x_{1}	$\begin{aligned} & \left.P_{\boldsymbol{A}}\right) \\ & (\text { Torr }) \end{aligned}$	γ_{1}	$\boldsymbol{x}_{\boldsymbol{A}}$	$\begin{aligned} & P_{\boldsymbol{A}} \\ & \text { (Torr) } \end{aligned}$	γ_{A}	$\boldsymbol{x}_{\boldsymbol{A}}$	$\begin{aligned} & P_{\boldsymbol{A}} \\ & (\text { Torr }) \end{aligned}$	γ_{A}	x_{A}	$\begin{aligned} & P_{\boldsymbol{A}} \\ & \text { (Torr) } \end{aligned}$	γ_{A}
Chloroform														
0.0292	4.74	0.6848	0.0578	6.54	0.4776	0.0530	4.50	0.3585	0.0691	4.91	0.2996	0.0598	3.93	0.2774
0.0825	13.74	0.7017	0.1088	12.85	0.4978	0.0955	8.40	0.3711	0.1251	9.36	0.3156	0.1124	7.78	0.2919
0.1082	18.20	0.7091	0.1592	19.58	0.5181	0.1587	14.89	0.3954	0.1855	14.83	0.3370	0.1589	11.54	0.3062
0.1601	27.52	0.7241	0.2097	26.96	0.5414	0.2079	20.50	0.4155	0.2407	20.48	0.3585	0.2086	15.99	0.3230
0.2216	39.25	0.7455	0.2597	34.95	0.5664	0.2424	24.85	0.4319	0.2975	27.08	0.3833	0.2520	20.30	0.3394
0.2895	53.07	0.7706	0.3000	41.86	0.5870	0.2848	30.59	0.4523	0.3519	34.32	0.4106	0.2980	25.40	0.3590
0.3598	68.19	0.7961	0.3523	51.69	0.6169	0.3371	38.58	0.4792	0.3963	40.96	0.4349	0.3432	30.94	0.3795
0.4232	82.75	0.8206	0.3933	59.90	0.6401	0.3856	46.57	0.5080	0.4445	49.10	0.4646	0.3995	38.80	0.4087
Dichloromethane														
0.0523	25.10	0.9337	0.0551	18.08	0.6340	0.0530	12.78	0.4693	0.0588	11.40	0.3775	0.0597	10.69	0.3489
0.1019	49.50	0.9447	0.0977	32.76	0.6525	0.0996	24.87	0.4860	0.1192	24.36	0.3978	0.1062	19.85	0.3640
0.1503	74.02	0.9566	0.1755	62.01	0.6865	0.1572	41.15	0.5093	0.1844	40.09	0.4229	0.1562	29.83	0.3803
0.1984	99.23	0.9700	0.2197	79.96	0.7066	0.2155	59.41	0.5358	0.2517	58.59	0.4525	0.1972	40.30	0.3976
0.2475	125.33	0.9812	0.2739	103.57	0.7334	0.2892	85.34	0.5728	0.3150	78.29	0.4827	0.2509	54.32	0.4208
0.3040	156.50	0.9960	0.3170	123.37	0.7543	0.3243	98.75	0.5908	0.3708	98.01	0.5128	0.2994	68.29	0.4430
0.3558	185.99	1.0099	0.3710	149.97	0.7824	0.3778	121.14	0.6214	0.4338	123.35	0.5511	0.3536	85.66	0.4703
0.4104	217.62	1.0229	0.4152	173.29	0.8069	0.4395	149.81	0.6597	0.4950	151.46	0.5922	0.4004	102.51	0.4966
Ethyl acetate														
0.0432	9.19	1.8058	0.0466	7.10	1.2958	0.0761	9.52	1.0631	0.0607	6.74	0.9434	0.0569	5.62	0.8389
0.0917	19.23	1.7791	0.0943	14.42	1.2984	0.1524	19.26	1.0716	0.1216	13.70	0.9571	0.1226	12.35	0.8559
0.1319	27.36	1.7592	0.1438	22.05	1.3008	0.2292	29.31	1.0841	0.1839	21.06	0.9715	0.1608	16.45	0.8683
0.1759	35.99	1.7335	0.1881	28.78	1.2971	0.2988	38.50	1.0912	0.2396	27.80	0.9839	0.2140	22.27	0.8829
0.2256	45.30	1.6993	0.2303	35.16	1.2937	0.3709	48.03	1.0955	0.3012	35.36	0.9947	0.2743	29.11	0.8996
0.2693	53.10	1.6670	0.2687	40.98	1.2914	0.4384	56.85	1.0960	0.3413	40.46	1.0038	0.3160	33.97	0.9109
0.3065	59.45	1.6385	0.3239	49.07	1.2814	0.4718	61.24	1.0965	0.4071	48.71	1.0121	0.3962	43.62	0.9319
0.3639	68.59	1.5907	0.3636	54.84	1.2748	0.5086	66.03	1.0960	0.4736	57.50	1.0260	-	-	-

Fig. 2. The natural logarithm of the activity coefficient $\ln \gamma_{A}$ at $303^{\circ} \mathrm{K}$ for the solutes, chloroform and dichloromethane, in dinonyl phthalate plotted against the solute mole fraction x_{A}. The dinonyl phthalate loadings on Celite are $19.6 \%(\Delta)$ and $28.9 \%(O)$. The full curves show the best fit of eqn. 3 to the results.

In view of these findings, loadings of ca. 30% were employed for the solvent mixtures and the results are given in Table III.

If bulk solubility is the only retention process in operation, the same vapour uptake per unit weight of liquid absorbent would be expected at the same relative vapour pressure irrespective of liquid loading. That this is not so with ethyl acetate as the solute is clearly seen in Fig. 3, which shows that the absorption is virtually identical for the bulk liquid and the 30% loaded samples, but that the 10% loaded samples absorbed significantly higher amounts of vapour. A more critical examination of the effects of liquid loading is presented by the plots of the activity coefficient of ethyl acetate absorbed by squalane and DNP shown in Figs. 4 and 5, respectively. In both cases the results for the bulk liquids and the 40% loaded samples agree within experimental error, although the former are slightly higher, but there are significant differences between results obtained at lower loadings and the 30% sample is seen to show greater absorption than the 40% sample. Thus, in these systems adsorption effects are important for loadings less than 40%.

Adsorption can occur onto the solid support, whether bare or coated with solvent, and at the gas-liquid interface. It was originally thought that gas-liquid interfacial adsorption would only occur with polar solvents, but Pecsok and Gump ${ }^{13}$ and others ${ }^{14.15}$ showed that it was possible when using polar solutes in non-polar solvents, such as hexadecane or squalane. To gain an idea of the amount of adsorption onto the solid support that might be expected, an adsorption isotherm for ethyl acetate was determined on bare Celite. The results are shown in Fig. 6. The adsorption amounted to $0.2 \mathrm{mg} \mathrm{g}{ }^{-1}$ Celite at the relative pressure $\left(P_{\mathrm{A}} / P_{\mathrm{A}}^{0}\right)$ of 0.3 and 0.3 $\mathrm{mg} \mathrm{g}^{-1}$ Celite at a relative pressure of 0.5 . The 10% loaded samples contained $c a$. 18 g of Celite, so the maximum weights of ethyl acetate that could have been adsorbed by the bare support were 3.6 and 5.4 mg at relative pressures of 0.3 and 0.5 , respec-

Fig. 3. The weight of ethyl acetate absorbed per gram of the solvents, squalane and dinonyl phthalate, at $303^{\circ} \mathrm{K}$ plotted against ethyl acetate relative vapour pressure $P_{\mathbf{A}} / P_{\mathrm{A}}^{0}$. The solvent loadings on Celite are $10.0 \%(\Delta)$ and $30.0 \%(\square)$, bulk liquid is denoted by (O).

Fig. 4. The natural logarithm of the activity coefficient of ethyl acetate in squalane at $303^{\circ} \mathrm{K}$ plotted against ethyl acetate mole fraction x_{A}. The squalane loadings on Celite are $10.0 \%(\mathrm{O}), \mathbf{2 0 . 0 \%}(\triangle), \mathbf{3 0 . 0} \%$ (\square) and 40.0% (\mathbf{A}). Bulk squalane is denoted by (O). The full curves show the best fit of eqn. 3 to the results.

Fig. 5. The natural logarithm of the activity coefficient of ethyl acetate in dinonyl phthalate at $303^{\circ} \mathrm{K}$ plotted against ethyl acetate mole fraction x_{A}. The dinonyl phthalate loadings on Celite are $\mathbf{1 0 . 0 \%}(\mathrm{O})$, $\mathbf{2 0 . 0 \%}(\Delta), 30.0 \%(\square)$ and $\mathbf{4 0 . 0 \%}$ (Δ). Bulk dinonyl phthalate is denoted by (O). The full curves show the best fit of eqn. 3 to the results.
tively. Freeguard and Stock ${ }^{16}$ found Celite to be virtually inert, but firebrick (a pink diatomaceous earth) quite active. Significantly they found that a 5% loaded sample on this latter support showed a lower vapour uptake than the bare support, suggesting that the absorbent liquid had a deactivating effect on the solid. The same effect may be expected with Celite, particularly with the slightly polar DNP which would cover some of the active sites on the solid. Thus, the values given above for adsorption onto the bare Celite undoubtedly overestimate the ethyl acetate adsorbed at the solid-liquid interface when the solid is coated by the solvent.

With bulk squalane as absorbent there was an approximate uptake of 93 mg (g squalane) ${ }^{-1}$ at a relative pressure of 0.5 , while the value for the 10% loaded sample was $97 \mathrm{mg} \mathrm{g}{ }^{-1}$. Thus, the 1.96 g of squalane in the 10% sample showed an "excess absorption" of $c a .7 .8 \mathrm{mg}$. The DNP samples showed absorptions of $c a .103 \mathrm{mg} \mathrm{g}^{-1}$ for the bulk liquid and $c a .107 \mathrm{mg} \mathrm{g}^{-1}$ for the 10% sample at a relative pressure of

Fig. 6. The adsorption of ethyl acetate on Celite at $303^{\circ} \mathrm{K}$ plotted against relative vapour pressure $P_{\mathrm{A}} / P_{\mathrm{A}}^{\mathrm{o}}$.
0.3 , giving the 2.0 g of DNP in the 10% sample an "excess absorption" of ca. 8.0 mg . Thus with both of these solvents, the presumed maximum adsorption onto the solid support is insufficient to account for the total adsorption, which confirms the previous suggestions of gas-liquid interfacial adsorption in polar solute and nonpolar solvent systems. As a result of these findings, liquid loadings of $40-45 \%$ were employed to determine absorption isotherms for ethyl acetate for the solvent mixtures. The results are shown in Table III.

The results for each isotherm presented in Table III were fitted to the FloryHuggins expression for a binary system (eqn. 3) by regarding each squalane-DNP mixture as a single component:

$$
\begin{equation*}
\ln \gamma_{\mathrm{A}}=\left(\ln \varphi_{\mathrm{A}} / \mathrm{x}_{\mathrm{A}}\right)+1-\varphi_{\mathrm{A}} / \mathrm{x}_{\mathrm{A}}+\left(1-\varphi_{\mathrm{A}}\right)^{2} \chi \tag{3}
\end{equation*}
$$

The interaction parameter χ was allowed to vary linearly with the solute volume fraction φ_{A} and from this fit an activity coefficient at infinite dilution $\gamma_{\mathrm{A}}^{\mathrm{o}}$ was calculated. The partition coefficient for the solute at infinite dilution between the solvent and vapour phase, K_{R}, was calculated using the standard relation,

$$
\begin{equation*}
K_{\mathbf{R}}=R T /\left(P_{\mathrm{A}}^{0} \gamma_{\mathrm{P}, \mathrm{~A}}^{\infty} V_{\mathrm{L}}\right) \tag{4}
\end{equation*}
$$

where V_{L} is the molar volume of the liquid absorbent taken as the molar average of that for the pure solvents. The calculated values of the infinite dilution activity coefficients and partition coefficients are given in Table IV. Freeguard and Stock ${ }^{11}$ obtained $\gamma_{\mathrm{A}}^{\infty}$ values for chloroform and dichloromethane of 0.653 and 1.076 in squalane and 0.251 and 0.379 in DNP, respectively. These are in reasonable agreement with the results shown here, especially when the experimental errors at low solute vapour pressures of the McBain-Bakr apparatus used by Freeguard and Stock are considered. Nitta et al. ${ }^{17}$ used GLC to measure a value of $\gamma_{\mathrm{A}}^{\infty}$ for ethyl acetate in squalane of 1.96 , which is higher than the value of 1.822 found in the present work.

Purnell and Vargas de Andrades proposed a linear relation between the partition coefficient of a solvent mixture and its volume fraction composition at infinite solute dilution,

$$
\begin{equation*}
K_{\mathbf{R}}(\mathrm{PA})=\varphi_{\mathrm{B}} K_{\mathrm{R}(\mathrm{~B})}+\varphi_{\mathrm{C}} K_{\mathbf{R C})} \tag{5}
\end{equation*}
$$

TABLE IV
ACTIVITY COEFFICIENTS γ_{A}^{∞} AND PARTITION COEFFICIENTS K_{R} FOR THE SOLUTES AT INFINITE DILUTION IN SQUALANE (B)-DNP (C) MIXTURES AT $303^{\circ} \mathrm{K}$
$n_{\mathrm{B}}: n_{\mathrm{C}}=$ approximate solvent mole ratio.

$n_{B}: n_{C}$	Chloroform		Dichloromethane		Ethyl acetate	
	$\gamma_{\boldsymbol{A}}^{\infty}$	K_{R}	γ_{A}^{∞}	$\boldsymbol{K}_{\boldsymbol{R}}$	$\gamma_{A}^{\text {m }}$	K_{R}
1:0	0.6752	223.9	0.9153	76.3	1.8218	167.3
3:1	0.4573	346.2	0.6166	118.4	1.2953	245.6
1:1	0.3409	487.1	0.4508	170.4	1.0488	318.7
1:3	0.2795	621.7	0.3596	224.1	0.9290	377.8
0:1	0.2615	701.3	0.3313	255.7	0.8238	448.9

An alternative expression based on Flory-Huggins solution theory was derived by Perry and Tiley ${ }^{18}$, namely

$$
\begin{equation*}
\ln K_{\mathrm{R}}(\mathrm{TP})=\varphi_{\mathrm{B}} \ln K_{\mathrm{R}(\mathrm{~B})}+\varphi_{\mathrm{C}} \ln K_{\mathrm{R}(\mathrm{C})}+\varphi_{\mathrm{B}} \varphi_{\mathrm{C}} \chi_{\mathrm{BC}} \tag{6}
\end{equation*}
$$

In these equations $K_{\mathrm{R}(\mathrm{B})}$ and $K_{\mathrm{R}(\mathrm{C})}$ are the partition coefficients for the pure solvents, while χ_{BC} is the Flory-Huggins interaction parameter between the two solvents. The intersolvent interaction parameter was calculated for the systems studied here by fitting the results from all five absorption isotherms for a single solute to the Flory-Huggins expression for a ternary system (eqn. 7) in the manner described previously ${ }^{2}$.

$$
\begin{equation*}
\ln \gamma_{\mathrm{A}}=\ln \left(\varphi_{\mathrm{A}} / x_{\mathrm{A}}\right)+1-\varphi_{\mathrm{A}} / \mathrm{x}_{\mathrm{A}}+\left(1-\varphi_{\mathrm{A}}\right)\left(\varphi_{\mathrm{B}} \chi_{\mathrm{AB}}+\varphi_{\mathrm{C}} \chi_{\mathrm{AC}}\right)-\varphi_{\mathrm{B}} \varphi_{\mathrm{C}} \chi_{\mathrm{BC}} \tag{7}
\end{equation*}
$$

The interaction parameters for a solute with each solvent were allowed to vary linearly with φ_{A} according to

$$
\begin{equation*}
\chi_{\mathrm{AB}}=\chi_{\mathrm{AB}}^{0}+\left[\varphi_{\mathrm{A}} /\left(\varphi_{\mathrm{A}}+\varphi_{\mathrm{B}}\right)\right] \chi_{\mathrm{AB}}^{\prime} \tag{8}
\end{equation*}
$$

and similarly for $\chi_{A C}$, while χ_{BC} was assumed to be independent of concentration. The values of the interaction parameters determined are shown in Table V.

The partition coefficients predicted by eqns. 5 and 6 are presented in Table VI together with the percentage deviations ($\Delta \%$) of the predicted values from the experimentally determined values. The predictions by the Purnell-Andrade equation can be seen to differ from the experimental values by up to 10% and are not as good as those based on the Tiley-Perry relation, which predicts the chloroform and dichloromethane partition coefficients to within 3-4\%. With ethyl acetate the TileyPerry relation gives an average deviation of 4.6%, compared with 6% for the Purnell-Andrade equation. The predictions of the Tiley-Perry equation for these polar solutes are not as good as for the non-polar solutes studied previously ${ }^{1-3}$. This is a consequence of the specific intermolecular interactions possible with polar solutes, which invalidate the model on which Flory-Huggins solution theory is based, assuming as it does random mixing. This is illustrated by the Flory-Huggins intersolvent interaction parameters per unit volume of solute, $\chi_{\mathrm{Bc}} / V_{\mathrm{A}}^{\mathrm{n}}$, shown in Table V , of $10.95,12.37$ and $5.85 \mathrm{~mol} \mathrm{dm}^{-3}$ for chloroform, dichloromethane and ethyl acetate respectively, which are considerably larger than the 2.7 ± 0.1 found for pentane, hexane, heptane and cyclohexane ${ }^{2}, 3.13$ for tetrachloromethane ${ }^{3}$ and $3.80 \mathrm{~mol} \mathrm{dm}^{-3}$

TABLE V
INTERACTION PARAMETERS FOR SOLUTES (A) IN SQUALANE (B)-DNP (C) MIXTURES AT $303^{\circ} \mathrm{K}$
$V_{A}^{0}=$ solute molar volume.

Solute	$\chi_{A B}^{0}$	$\chi_{A B}^{\prime}$	$\chi_{A C}^{0}$	$\chi_{A C}^{\prime}$	$\chi_{B C}$	$\chi_{B C} / V_{A}^{0}$ $\left(m o l d m^{-3}\right)$
Chloroform	0.613	-0.185	-0.503	0.883	0.889	10.95
Dichlormethane	1.085	-0.676	-0.069	1.054	0.804	12.37
Ethyl acetate	1.366	-0.418	0.534	-0.251	0.580	5.85

TABLE VI
PARTITION COEFFICIENTS FOR THE SOLUTES AT INFINITE DILUTION IN SQUALANE (B)-DNP (C) MIXTURES AT $303^{\circ} \mathrm{K}$ CALCULATED FROM THE PARTITION COEFFICIENTS IN THE PURE SOLVENTS
$n_{\mathrm{B}}: n_{\mathrm{C}}=$ approximate solvent mole ratio; $\varphi_{\mathrm{B}}=$ volume fraction of squalane in the solvent mixture; $K_{\mathrm{R}}(\mathrm{PA})$ $=$ partition coefficient calculated from the Purnell-Andrade equation (eqn. 5); $K_{R}(T P)=$ partition coefficient calculated from the Tiley-Perry equation (eqn. 6); $\Delta \%=$ percentage deviation of calculated K_{R} from experimental value.

Solute	$n_{B}: n_{C}$	φ_{B}	$K_{R}(P A)$	$\Delta \%$	$K_{R}(T P)$	$\Delta \%$
Chloroform	$3: 1$	0.7785	329.6	4.8	336.1	2.9
	$1: 1$	0.5389	444.0	8.8	472.7	3.0
	$1: 3$	0.2983	558.9	10.1	600.8	3.4
Dichloromethane	$3: 1$	0.7861	114.7	3.1	113.1	4.4
	$1: 1$	0.5287	160.9	5.6	164.8	3.3
	$1: 3$	0.2784	205.8	8.1	214.6	4.2
Ethyl acetate	$3: 1$	0.7934	225.5	8.2	225.6	8.1
	$1: 1$	0.5457	295.2	7.3	302.5	5.1
	$1: 3$	0.2881	367.8	2.6	380.5	0.7

for benzene ${ }^{2}$. The presence of specific interactions is also indicated by the negative values of the interaction parameter χ_{Ac}^{0} in Table V , for the interaction between the solute and DNP, where hydrogen bonding could occur with the chloromethanes. The much higher values of χ_{AB}^{0} show the solutes to be much less compatible with squalane than with DNP. An interesting point is that the concentration dependencies as shown by $\chi_{A B}^{\prime}$ and $\chi_{A C}^{\prime}$ are considerably larger than those found with the hydrocarbons ${ }^{2}$ or tetrachloromethane ${ }^{3}$. This is presumably due to the greater change of the solution forces on adding polar solutes than would be involved with non-polar solutes. A further consequence of the greater compatibility of polar solutes with DNP than with squalane is that the composition of the mixed solvents might have a greater influence on solution properties than with non-polar solutes. Thus treatment of χ_{BC} as a single concentration-independent parameter may not be justified when using polar solutes and the introduction of an extra parameter to account for concentration dependence might be beneficial to the fit of the Tiley-Perry relation.

ACKNOWLEDGEMENTS

The authors wish to thank the Science and Engineering Research Council (U.K.) for a grant enabling the purchase of the magnetic suspension balance and for the award of a research studentship to G.J.P.

REFERENCES

1 A. J. Ashworth and D. M. Hooker, J. Chromatogr., 131 (1977) 399.
2 A. J. Ashworth and D. M. Hooker, J. Chromatogr., 174 (1979) 307.
3 A. J. Ashworth and G. J. Price, J. Chromatogr., 238 (1982) 89.
4 A. J. Ashworth, T. M. Letcher and G. J. Price, J. Chromatogr., 262 (1983) 33.

5 J. H. Purnell and J. M. Vargas de Andrade, J. Amer. Chem. Soc., 97 (1975) 3585.
6 A. J. Ashworth, Thermochim. Acta, 51 (1981) 17.
7 S. Ohe, Computer Aided Data Book of Vapour Pressures, Data Pub. Co., Tokyo, 1976.
8 J. H. Dymond and E. B. Smith, The Virial Coefficients of Pure Gases and Mixtures, Oxford University Press, Oxford, 1980.
9 Selected Values of Properties of Chemical Compounds, Thermodynamics Research Center Data Project, Texas A\&M University, College Station, 1965, Table 23-10-2 (10.011)d and Table 23-2-1 (1.1320)d.
10 J. R. Conder and C. L. Young, Physico-Chemical Measurement by Gas Chromatography, Wiley, Chichester, 1979.
11 G. F. Freeguard and R. Stock, Trans. Farad. Soc., 59 (1963) 1655.
12 A. J. Ashworth, J. Chem. Soc., Farad. Trans. I, 69 (1973) 459.
13 R. L. Pecsok and B. H. Gump, J. Phys. Chem., 71 (1967) 2202.
14 H.-L. Liao and D. E. Martire, Anal. Chem., 44 (1972) 498.
15 J. R. Conder, Anal. Chem., 48 (1976) 917.
16 G. F. Freeguard and R. Stock, in M. van Swaay (Editor), Gas Chromatography 1962, Butterworths, London, 1962, p. 102.
17 T. Nitta, K. Morinaga and T. Katayama, Ind. Eng. Chem. Fundam., 21 (1982) 396.
18 R. W. Perry and P. F. Tiley, J. Chem. Soc., Farad. Trans. I, 74 (1978) 1655.

